Report Repeat Revise

Diet and Immunology

by Matthew R. Ricci, Ph.D. VP, Science Director, Research Diets, Inc.

Diet and Immunology

It is well accepted that diet has far-reaching effects on the physiology of lab animals. Targeted phenotypes can be purposely induced by using specific diets, allowing the researcher to test their hypotheses. Like other areas of study, immunology is a field in which attention must be paid to the diet being fed, since changing the diet composition could result in a different immunological phenotype. This requires that researchers understand the differences between grain-based (GB) chows and purified ingredient diets, and unfortunately, many investigators (immunologists or not) are unaware of these differences.

Briefly, GB chows are made with unrefined grains and animal ingredients each of which contain multiple nutrients and non-nutrients. These ingredients include ground corn, ground wheat, ground oats, soybean meal, alfalfa meal, and animal by-products such as fish meal and porcine animal meal. Because these are relatively unrefined, the composition of these ingredients will naturally vary due to soil conditions, climate, and timing of harvest. As a result, the GB chow from which they are made will have batch to batch variation. Furthermore, GB chows can also contain varying levels of phytoestrogens and heavy metals, both of which can unintentionally affect research outcomes (3, 4).

In contrast, purified ingredient diets are made with refined ingredients that contain one main nutrient and are commonly phytoestrogen-free, depending on the protein source. This means that they have consistent nutrient composition, can be reported from one batch to the next, can be easily modified to the researchers' advantage while containing little to no confounding non-nutrients. In other words, they provide a more stable and 'cleaner' diet base compared to GB chows.

So how might the type of diet impact immunology research?

Non-nutrients

The aryl hydrocarbon receptor (AhR) is expressed on intraepithelial lymphocytes and helps to maintain these cells in places like the intestine. Li et al. (1) found that a GB chow contained an unidentified ligand for the AhR, because when this GB chow was fed to mice, it affected mRNA levels of the AhR and Cyp1a1 in the small intestine. However, the authors could not attribute this effect to any one specific diet-derived chemical entity since "The chemical complexity of the diet makes it difficult to determine the exact nature of all potential AhR ligands." They then chose to add specific amount of purified indole-3-carbinole (I3C; a phytochemical found in cruciferous plants that can be converted in *vivo* to an AhR ligand)

	Purified High Fat Diet	Purified Low Fat Control Diet	Grain Based Chow	
	Ingredient*	Matched	NOT Matched	Reason
Fat	Lard, soybean oil	\checkmark	Х	Variable Sources
Protein	Casein	\checkmark	X	Variable Sources
Carbohydrate	Corn starch, sucrose, maltodextrin	\checkmark	x	Variable Sources
Fiber	Cellulose, insoluble	\checkmark	X	Variable Sources/ 4X Higher
Micronutrients	Vitamins, minerals	\checkmark	Х	Variable Level
Phytoestrogens	NONE	\checkmark	X	Variable Level
Heavy Metals	NONE		Х	Variable Level

Purified Diet Control vs. Grain Based Chow

DIETS

*Ingredients typical of a purified diet, though other purified sources can be used.

to a purified ingredient diet. The purified ingredient diet was used to provide a clean diet background, devoid of any confounding plant phytochemicals that are often found in GB chow diets. The authors reported that I3C supplementation in this way increased the number of small intestinal intraepithelial lymphocytes and importantly, the reason for this increase had a direct and identifiable cause.

Gut microbiome

The mammalian gut hosts a very dense population of gut microbes, with estimations of -10^{12} bacteria per ml for humans, making it the most densely populated bacterial ecosystem known (5). The types and levels of gut bacteria are affected by the composition of the diet, with fiber probably being the dietary constituent thought to have the greatest effect on the gut microbiome. These gut microbes are thought to play a role in maintaining a healthy gut barrier and in gut innate immune responses (6). Changes in gut microbe populations may therefore affect barrier function and inflammation. Because GB chows typically have increased levels and more diverse (and undefined) types of fibers (both fermentable and non-fermentable fibers) compared to traditional purified ingredient diets, which typically have one source (i.e. cellulose, a non-fermentable fiber), it would be expected that effects on gut microbiota would be different between these diet types and indeed they are (7). Therefore researchers studying immunology, especially as it pertains to the gut, should be aware of these diet differences. Sources of soluble fiber (those fermentable by gut bacteria, e.g. inulin, fructooligosaccharides) have been added to purified ingredient diets and been shown to affect gut microbiota populations (8) and so provide the opportunity to study the effects of dietary fibers on gut microbiome-induced changes in gut immunity in a stable, controllable diet background.

Please contact us about how we might help you control the diet in your next study.

Diet and Immunology

Contact our Resource Center for valuable insight from more than 25 years of product experience in the field of purfied diets. Let us formulate the diets to meet your specific study needs.

Custom OpenSource Diets

Research Diets, Inc has pioneered the formulation and production of diets which promote hypertriglyceridemia and insulin resistance in rodents. Our scientists specialize in providing custom purified OpenSource diets. By carefully designing the diet formula to fit your protocol, you have complete control over small or large changes in diet composition. Plus you are able to report what your animals were fed, repeat the formula and revise diet composition as necessary.

Incorporate Test Compounds

Research Diets, Inc. will incorporate your test compound into pelleted diets for simple, safe dosing. Feeding test compounds eliminates dosing related stress to the animal, eliminates vehicle effects, and saves time and labor. Consult with one of our scientists on the formula, determine the dosage required and the diet will be produced and shipped in 5 to 7 business days.

Value Added Resource

The value of our products is in the scientific support we provide. Our Resource Center is staffed with Masters and Ph.D. level scientists with access to over 14,000 original formulas and a database of more than 3,800 journal articles. We welcome the opportunity to talk science with researchers throughout the world as we maintain our leadership role as the knowledge base for OpenSource Diet formulation.

BioDAQ Episodic Intake Monitor

BioDAQ E2 Episodic monitoring system measures the ad libitum food and water intake behavior of singly housed lab rats and mice at very high resolution in their home cage. Computer controlled electronics record food and water intake episodically by measuring the momentto-moment, undisturbed intake behavior of the animals being studied. BioDAQ E3 features a programmable automated gate to restrict access to food or liquid by time or amount consumed.

References

- I. Li, Y., Innocentin, S., Withers, D.R., et al. Exogenous Stimuli Maintain Intraepithelial Lymphocytes via Aryl Hydrocarbon Receptor Activation. Cell 2011, 147: 629–640.
- Patrone, V., Ferrari, S., Lizier, M., et. al. Short-term modifications in the distal gut microbiota of weaning mice induced by a high-fat diet. Microbiology 2012, 158: 983–992.
- Heindel, J.J., and Vom Saal, F.S. Meeting report: batch-tobatch variability in estrogenic activity in commercial animal diets--importance and approaches for laboratory animal research. Environ Health Perspect (2008) 116: 389393.
- Kozul, C.D., Nomikos, A.P., Hampton, T.H. et al. Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. (2008) Chemico-Biol Interact. 173:129140.
- Albenberg, L., Lewis, J.D. and Wu, G.D. Food and gut microbiota in IBD: A critical connection. Curr Opin Gastroenterol. 2012, 28 (4).
- Cerf-Bensussan N. and Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes? Nature Rev. Immunology. 2010, 10:735-744.
- Goto, H., Naoki, T., Ogasawara, T., et al. Effects of Fructo-Oligosaccharide on DSS-Induced Colitis Differ in Mice Fed Nonpurified and Purified Diets. J. Nutr. 2010, 140: 2121-2127.
- Santos, A., San Mauro, M. and Marquina Diaz, D. Prebiotics and their long-term influence on the microbial populations in the mouse bowel. Food Microbiology 2006, 23:498-503.

